Climate and Land Use Changes on Streamflow and Subsurface Recharge in the Fluvià Basin, Spain

نویسندگان

  • Lucila Candela
  • Karim Tamoh
  • Gonzalo Olivares
  • Manuel Gómez
چکیده

Climate change impact on water resources (streamflow and deep natural recharge) based on the downscaled outputs from the ECHAM5 general circulation model (GCM) has been investigated in the Mediterranean basin (Fluvià, Spain) for the A2, B1 greenhouse scenarios and 2000–2024/2025–2050 time slices. The HEC-HMS 3.4 rainfall-runoff numerical model was the basic tool used to generate streamflow for the historical period, and deep natural recharge was calculated from Visual-BALAN 2.0, a water-soil-plant distributed model. The hydrologic and recharge models were employed to generate future climate change hydrographs and the deep recharge amount. Furthermore, the selected future climate scenarios, subject to possible changes in the land use/land cover forecast, were integrated into the models, and water resource impacts were assessed. The multiple combinations of climate model, time slices, greenhouse scenarios, land use/land cover scenarios and hydrological estimation methods resulted in six scenarios. The obtained results estimate an increase in temperature (1.5 ̋C), a decline in precipitation (17%) and a maximum decrease of 49.5% and 16.8% in runoff and groundwater recharge, respectively, for 2050 (A2) compared to the historical values. Planned land cover scenarios, implying small changes of agricultural and forested land, show no major contribution to future water resource changes. According to the results, the most sensitive parameters conditioning future water resources are changes in temperature and precipitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subsurface imaging of vegetation, climate, and root-zone moisture interactions

[1] Changes in global climate and land use affect important processes from evapotranspiration and groundwater recharge to carbon storage and biochemical cycling. Near surface soil moisture is pivotal to understand the consequences of these changes. However, the dynamic interactions between vegetation and soil moisture remain largely unresolved because it is difficult to monitor and quantify sub...

متن کامل

Isolating the impacts of land use and climate change on streamflow

Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the ...

متن کامل

Forecasting of Groundwater Table and Water Budget under Different Drought Scenarios using MODFLOW Model (Case Study: Garbaygan Plain, Fars Province, Iran)

Groundwater drought is a natural hazard that develops when groundwater systems are affected by climatical drought, when climatical drought occures, first groundwater recharge, later groundwater levels and groundwater discharge decrease. The origin of drought is a deficit in precipitation and that takes place in all the elements that comprise the hydrological cycle (flow in the rivers, soil mois...

متن کامل

Analyzing streamflow changes: irrigation-enhanced interaction between aquifer and streamflow in the Republican River basin

Groundwater-fed irrigation has altered surface and groundwater interactions in the Republic River basin (RRB) in the midwestern United States, where agriculture heavily depends on irrigation. The decreasing flow trend recorded at the RRB gauging station since the 1950s reflects the synthetical effect of dynamic interactions between surface water and groundwater systems, which has been enhanced ...

متن کامل

Analysis of Streamflow Changes under Climate Change Using Rainfall-Runoff Model in the Kor River Basin

Abstract In this study, the predicted monthly temperature and rainfall data from HadCM3 model (base period, ۱۹۷۲-۲۰۰۱) and next period (۲۰۱۱-۲۰۴۰) under A2emission scenario were used to investigate the impacts of climate change on runoff variations in the Kor river basin. HadCM3 model output was downscaled based on a temporal downscaling approach (Change Factor) and spatial downscaling appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016